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INTRODUCTION: A simplified analysis is presented to extend a previous work [1] on flame extinction in a
quiescent microgravity environment to a more likely situation of a mild opposing flow. The energy balance
equation, that includes surface re-radiation, is solved to yield a closed form spread rate expression in terms of its
thermal limit, and a radiation number that can be evaluated from the known parameters of the problem. Based on
this spread rate expression, extinction criterions for a flame over solid fuels, both thin and thick, have been
developed that are qualitatively verified with experiments conducted at the MGLAB [2] in Japan. Flammability
maps with oxygen level, opposing flow velocity and fuel thickness as independent variables are extracted from the
theory that explains the well-established trends in the existing experimental data [3].

Thermal Regime: An energy balance for the solid phase control volume of Fig. 1 can be written as.
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where, T r and T, are characteristic flame and vaporization temperature, T, is the thickness of the heated layer, and

L, =a, / (Vf + Vg> is the gas-phase length scale. For thin fuels in the thermal limit, T, =T and € =0 produces
the de Ris solution V4, ~ (Xg /p,c )F , where F' = (Tf - Tv)/(Tv - Tm) - Using V; iy to noN-

dimensionalize V,, m, =V, IV EQ. (1) can be expressed in non-dimensional form as follows.
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The thermal thin limit 1) , ;. ~ 1 is recovered when R, =0 and T, =7 . To obtain a more general solution

T, /T for a thick fuel can be scaled as
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Substituting this into Eq. (2) and still ignoring radiation, we obtain the thermal limit for semi-infinite fuel beds.
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The simplification above is achieved because for both PMMA and cellulose it can be shown that F' < (). Equation
(4) also provides a criterion for transition between the thin and the thick limit for M g > 1. Prediction from Eq. (4)
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is plotted in Fig. 2 showing the transition from the thin to the thick limit in the thermal regime. Not much data in the
thick-thin transitional region is available to verify this simple transition criterion.

Radiative Regime: The energy balance equation, Eq. (2), is solved in both the thick and thin limit producing
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These results are plotted in Figs. 3 and 4 for several values of the radiation parameter 930 . A number of important

features of the radiative effects on flame spread rates are revealed by these plots. When R, > 0, the slope of the

spread rate curves decreases with opposing velocity for thin fuels while this trend is completely reversed for thick
fuels. The MGLAB data [2] for flame spread over thin PMMA, shown in Fig 5, support this predicted trend for thin
fuels. The DARTFIRE experiments [4] for flame spread over thick PMMA lends supports to the trends predicted by
Fig. 4.

Obvioulsy, for R, =0 and/or , —> 0, the thermal limits are recovered with 1, y;, =1 and M/ i
being proportional to 1, . To establish a criterion for the transition between the thermal and radiative regimes, we

simplify Eq. (5) assuming 1, > 1. If the spread rate is non-dimensionalized by the corresponding thermal limit,
Eq. Error! Reference source not found. for both the thick and thin limit can be shown to approach the same form.
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Thin and Thick Fuels: Forn, >1, 1}

A single parameter R, , therefore, controls the radiative effects on the spread rate for both thermally thin and thick
fuels. M 'f from Eq. (6) is plotted in Fig. 6 against versus 1 /R, , so that the abscissa is proportional to Vg .

Superposed on this figure are experimental spread rates from MGLAB experiments, only part of which were
previously reported [2]. Although the spread of the data around the prediction of Eq. (6) is substantial, the onset of
radiative effects seems to be well correlated by the analytical prediction.

Extinction Criteria: The spread rate expressions of Eq. (5) can be used to establish criterion for flame
extinguishment. As can be seen from Figs. 3 and 4, there are two types of extinction behavior. For 1 2 >1, in both

the thin and thick limit, steady flame cannot be sustained provided N ¢ R, a criterion that is independent of fuel

thickness. For M ¢ < 1, the thick fuel criterion remains unaltered. However for thin fuels, the spread rate assumes

complex values, an indication of extinguishment, when N ¢ < 2\/R, -1. For flame spread over PMMA, these

criteria are combined in the flammability map of Fig. 7. Note that for a critical thickness can be calculated from the
relation M ¢ = R, =1, beyond which extinction is independent of fuel thickness, thereby, defining a radiatively

thick fuel.
Conclusion

In this article we present a simplified analysis to develop for the first time a closed-form expression for the spread
rate and extinction criterion for flame spread over condensed fuels in a mild opposing-flow microgravity
environment. The results presented are supported by experiments on thin PMMA conducted in the MGLAB.
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Fig. 3. Spread rate as a function ogf N, and R, as

predicted by Eq. (7). Opposed-flow flame spread

extends down to 1, =

-1.
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Fig. 4. Spread rate for thick fuel as a function of N 2

and R, as predicted by Eq. (7). The spread rate is zero

(extinction) for n, <R,.
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Fig. 5. Non-dimensional experimental spread rate [9] as a function of 1 < for different oxygen mole
fractions and fuel half-thickness. Note that in this plot the highest experimental spread rate is used to

normalize Vf and Vg instead of the theoretical thermal limit.
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Fig. 6. Prediction of the non-dimensional spread rate 1| I plotted as a function of

inverse of R from Eq. (10). The prediction is compared with the spread rate data

0,thin
from the MGLAB experiments.
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